Home / Component / APU / GlobalFoundries develops 7nm and 10nm technologies in-house

GlobalFoundries develops 7nm and 10nm technologies in-house

GlobalFoundries is working on its own 7nm and 10nm fabrication processes and it does not look like the company has plans to license technologies from the outside. The contract maker of semiconductors hopes that specialists from IBM’s microelectronics unit will help it to design world-class leading-edge manufacturing processes.

GlobalFoundries, which was once manufacturing arm of Advanced Micro Devices, used to have problems with delivering advanced manufacturing technologies on time. Over the years, GlobalFoundries’ management did a lot to add competitive advantages to the company: it acquired Chartered Semiconductor, brought-in a lot of talent from the outside and participated in various industry-wide initiatives. While it did help to make GlobalFoundries the world’s No. 2 or No. 3 contract maker of chips, the company struggled to remain competitive with its leading-edge technologies, a hard thing to do nowadays.


The company had issues with its 32nm SOI process technology, it was late with 28nm node, it cancelled 28nm FDSOI and it was going to be late-to-market with its 14nm-XM process. In a bid to catch up and potentially gain new customers, GlobalFoundries licensed 14nm LPE [low-power early] and 14nm LPP [low-power plus] technologies from Samsung Electronics. However, going forward GlobalFoundries hopes to develop its own manufacturing processes. The combined team of IBM and GF engineers is expected to deliver robust 10nm and 7nm fabrication technologies.

“We are developing our own technologies for the next nodes,” said Sanjay Jha, chief executive officer of GlobalFoundries, in an interview with EETimes web-site. “The whole point of the IBM Microelectronics business acquisition is to leverage IBM’s technologists and technology to accelerate our own development of leading-edge process technologies.”

Mr. Jha does not reveal any timeframes concerning 10nm fabrication process and any kind of targets that the company wants to hit with the manufacturing technology. Keeping in mind that Samsung Electronics and Taiwan Semiconductor Manufacturing Co. plan to start production of chips using their 10nm processes in late 2016 or early 2017, it is obvious that GlobalFoundries will be behind its rivals. In a bid to start low-volume production using 10nm manufacturing tech in late 2016 or early 2017, GF needed to deliver early process design kits (PDKs) to its customers three to six months ago. The technology is in development and no PDKs are available to key clients like Advanced Micro Devices.


Mr. Jha is confident that extreme ultraviolet (EUV) lithography will not be commercially viable before 2018 or 2019, which is in line with expectations by other industry executives.

“We are not expecting EUV before 2018 or 2019,” said Mr. Jha. “We are focused on optical tools for 10nm and 7nm. As EUV stabilizes, we may use EUV for some layers. We are also using EUV to accelerate prototyping.”

Discuss on our Facebook page, HERE.

KitGuru Says: It is clear that GlobalFoundries will be behind its rivals with 10nm manufacturing technology. While GlobalFoundries will likely try to make its 10nm competitive in order not to let its main customer down, it is obvious that the joint team of IBM and GloFo will focus on 7nm fabrication process. Keeping in mind that IBM experimented with a number of promising technologies and that intellectual property is now available to GlobalFoundries, we can expect very interesting results. It is possible that at 7nm the foundry industry will have three viable competitors (or four, if Intel is considered a foundry). The main question is whether GlobalFoundries will have enough money to develop that state-of-the-art process technology…

Become a Patron!

Check Also

Nvidia App launches to unify GeForce Experience and old-school Nvidia Control Panel

For years now, Nvidia has had a two-pronged approach for its drivers, offering users the …